题目: 给定一个大小为N*M的迷宫. 迷宫由通道和墙壁组成, 每一步可以向邻接的上下左右四格的通道移动.
请求出从起点到终点所需的最小步数. 请注意, 本题假定从起点一定可以移动到终点.
使用宽度优先搜索算法(DFS), 依次遍历迷宫的四个方向, 当有可以走且未走过的方向时, 移动并且步数加一.
时间复杂度取决于迷宫的状态数, O(4*M*N)=O(M*N).
代码:
/* * main.cpp * * Created on: 2014.7.17 * Author: spike */ /*eclipse cdt, gcc 4.8.1*/ #include <stdio.h> #include <limits.h> #include <utility> #include <queue> using namespace std; class Program { static const int MAX_N=20, MAX_M=20; const int INF = INT_MAX>>2; typedef pair<int, int> P; char maze[MAX_N][MAX_M+1] = { "#S######.#", "......#..#", ".#.##.##.#", ".#........", "##.##.####", "....#....#", ".#######.#", "....#.....", ".####.###.", "....#...G#" }; int N = 10, M = 10; int sx=0, sy=1; //起点坐标 int gx=9, gy=8; //重点坐标 int d[MAX_N][MAX_M]; int dx[4] = {1,0,-1,0}, dy[4] = {0,1,0,-1}; //四个方向移动的坐标 int bfs() { queue<P> que; for (int i=0; i<N; ++i) for (int j=0; j<M; ++j) d[i][j] = INF; que.push(P(sx, sy)); d[sx][sy] = 0; while (que.size()) { P p = que.front(); que.pop(); if (p.first == gx && p.second == gy) break; for (int i=0; i<4; i++) { int nx = p.first + dx[i], ny = p.second + dy[i]; if (0<=nx&&nx<N&&0<=ny&&ny<M&&maze[nx][ny]!='#'&&d[nx][ny]==INF) { que.push(P(nx,ny)); d[nx][ny]=d[p.first][p.second]+1; } } } return d[gx][gy]; } public: void solve() { int res = bfs(); printf("result = %d\n", res); } }; int main(void) { Program P; P.solve(); return 0; }