首页 > 编程语言 > Python如何使用bokeh包和geojson数据绘制地图
2020
09-24

Python如何使用bokeh包和geojson数据绘制地图

最近要绘制伦敦区地图,查阅了很多资料后最终选择使用bokeh包以及伦敦区的geojson数据绘制。
bokeh是基于python的绘图工具,可以绘制各种类型的图表,支持geojson数据的读取及绘制地图。

安装bokeh

$ pip install bokeh

软件版本

python-3.7.7bokeh-2.0.0

数据来源

伦敦地图数据来源于Highmaps地图数据集。下载的是英国的地图数据united-kindom.geo.json。需要对得到的数据进行预处理才能得到只含伦敦地区的数据。这需要对geojson数据的格式有一定的了解。在对数据进行处理之前,先看如何绘制英国地图。

绘制英国地图

from bokeh.plotting import curdoc, figure
from bokeh.models import GeoJSONDataSource

# 读入英国地图数据并传给GeoJSONDataSource
with open("united-kindom.geo.json", encoding="utf8") as f:
  geo_source = GeoJSONDataSource(geojson=f.read())
# 设置一张画布
p = figure(width=500, height=500)
# 使用patches函数以及geo_source绘制地图
p.patches(xs='xs', ys='ys', source=geo_source)

curdoc().add_root(p)

上述代码可以绘制出英国地图。将上述代码保存为test.py,在终端运行

$ bokeh serve --show test.py

这会自动打开浏览器,并显示英国地图。
运行结果如图:

获取伦敦地区数据

获取伦敦地区数据可以手动从united-kingdom.geo.json文件中筛选出伦敦的数据,也可以先用python先把数据过滤一遍,然后将数据传给bokeh。这需要对geojson文件格式有一定的了解,在此不详细介绍。

from bokeh.plotting import curdoc, figure
from bokeh.models import GeoJSONDataSource
import json

# 用json库读取数据
with open("united-kindom.geo.json", encoding="utf8") as f:
  data = json.loads(f.read())
# 判断是不是伦敦地区数据
def isInLondon(district):
  if 'type' in district['properties'] and 'london borough' in district['properties']['type'].lower():
    return True
  if 'type-en' in district['properties'] and 'london borough' in district['properties']['type'].lower():
    return True
  if 'woe-name' in district['properties'] and 'city of london' in district['properties']['woe-name'].lower():
    return True
  return False
# 过滤数据
data['features'] = list(filter(isInLondon, data['features']))
#
geo_source = GeoJSONDataSource(geojson=json.dumps(data))
p = figure(width=500, height=500)
p.patches(xs='xs', ys='ys', source=geo_source)

curdoc().add_root(p)

运行结果如图:

美化

上面的伦敦地图只是一个大概的轮廓,下面对地图添加一系列功能。

添加各区轮廓线

p.patches(xs='xs', ys='ys', fill_alpha=0.7, # 画轮廓线
    line_color='white', # 线的颜色
    line_width=0.5,   # 线的宽度
    source=geo_source)

现在地图区域轮廓很清晰。

添加颜色

# 为每一个地区增加一个color属性
for i in range(len(data['features'])):
  data['features'][i]['properties']['color'] = ['blue', 'red', 'yellow', 'orange', 'gray', 'purple'][i % 6]
p.patches(xs='xs', ys='ys', fill_alpha=0.7,
    line_color='white',
    line_width=0.5,
    color="color",  # 增加颜色属性,这里的"color"对应每个地区的color属性
    source=geo_source)

现在地图五颜六色。

增加图注

import random
# 随机产生数据用于展示
for i in range(len(data['features'])):
  data['features'][i]['properties']['number'] = random.randint(0, 20_000)
p = figure(width=500, height=500,
    tooltips="@name, number: @number" # 使用tooltips生成图注,@+属性名称,这里的name是数据中原本有的,number是新近添加的。
  )

现在鼠标放到区域上时,会显示"区域名, number: 数字"。

去掉坐标轴与背景线

p.axis.axis_label = None
p.axis.visible = False
p.grid.grid_line_color = None

最终代码

from bokeh.plotting import curdoc, figure
from bokeh.models import GeoJSONDataSource
import json
import random
with open("united-kindom.geo.json", encoding="utf8") as f:
  data = json.loads(f.read())

def isInLondon(district):
  if 'type' in district['properties'] and 'london borough' in district['properties']['type'].lower():
    return True
  if 'type-en' in district['properties'] and 'london borough' in district['properties']['type'].lower():
    return True
  if 'woe-name' in district['properties'] and 'city of london' in district['properties']['woe-name'].lower():
    return True
  return False

data['features'] = list(filter(isInLondon, data['features']))
for i in range(len(data['features'])):
  data['features'][i]['properties']['color'] = ['blue', 'red', 'yellow', 'orange', 'gray', 'purple'][i % 6]
  data['features'][i]['properties']['number'] = random.randint(0, 20_000)

geo_source = GeoJSONDataSource(geojson=json.dumps(data))
p = figure(width=500, height=500,
    tooltips="@name, number: @number")
p.patches(xs='xs', ys='ys', fill_alpha=0.7,
    line_color='white',
    line_width=0.5,
    color="color",
    source=geo_source)

p.axis.axis_label = None
p.axis.visible = False
p.grid.grid_line_color = None

curdoc().add_root(p)

伦敦地图完成了

总结

最开始想用pyecharts做的,但是pyecharts并没有伦敦的地图。折腾半天,最后只好自己找geojson数据来画地图。

找到了很多关于地图的数据和工具,比如上文中提到的highmap数据集,以及DataV.altas,这个工具可以可视化地提取中国区域的地图数据,但感觉比起自己找数据,画中国地图还是pyecharts来得实在。

数据最重要。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持自学编程网。

编程技巧