官方文档很全面,搜索功能也很好。但是如果你想单独实现某个功能,根本无从搜寻。于是我写了这个笔记。从功能出发。
两个tensor经过一个layer实例会产生两个输出。
a = Input(shape=(280, 256)) b = Input(shape=(280, 256)) lstm = LSTM(32) encoded_a = lstm(a) encoded_b = lstm(b) lstm.output
这个代码有错误,因为最后一行没有指定lstm这个layer实例的那个输出。
>> AttributeError: Layer lstm_1 has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use `get_output_at(node_index)` instead.
所以如果想要得到多个输出中的一个:
assert lstm.get_output_at(0) == encoded_a
assert lstm.get_output_at(1) == encoded_b
补充知识:kears训练中如何实时输出卷积层的结果?
在训练unet模型时,发现预测结果和真实结果几乎完全差距太大,想着打印每层输出的结果查看问题在哪?
但是发现kears只是提供了训练完成后在模型测试时输出每层的函数。并没有提供训练时的函数,同时本着不对原有代码进行太大改动。最后实现了这个方法。
即新建一个输出节点添加到现有的网络结构里面。
#新建一个打印层。 class PrintLayer(Layer): #初始化方法,不须改变 def __init__(self, **kwargs): super(PrintLayer, self).__init__(**kwargs) #调用该层时执行的方法 def call(self, x): x = tf.Print(x,[x],message="x is: ",summarize=65536) #调用tf的Print方法打印tensor方法,第一个参数为输入的x,第二个参数为要输出的参数,summarize参数为输出的元素个数。 return x; #一定要返回tf.Print()函数返回的变量,不要直接使用传入的变量。 #接着在网络中引入 conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) print11 = PrintLayer()(conv9) conv10 = Conv2D(1, 1, activation = 'sigmoid')(print11) #PrintLayer层处理的结果一定要在下一层用到,不然不会打印tensor。该结点可以加在任何结点之间。
以上这篇keras 获取某层输出 获取复用层的多次输出实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持自学编程网。
- 本文固定链接: https://zxbcw.cn/post/187172/
- 转载请注明:必须在正文中标注并保留原文链接
- QQ群: PHP高手阵营官方总群(344148542)
- QQ群: Yii2.0开发(304864863)