可以通过遍历的方法:
pandas按行按列遍历Dataframe的几种方式:https://www.jb51.net/article/172623.htm
选择列
使用类字典属性,返回的是Series类型
data[‘w']
遍历Series
for index in data['w'] .index: time_dis = data['w'] .get(index)
根据行索引和列名,获取一个元素的值
>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... columns=['A', 'B', 'C']) >>> df A B C 0 0 2 3 1 0 4 1 2 10 20 30
>>> df.at[4, 'B'] 2
或者
>>> df.iloc[5].at['B'] 4
pandas.DataFrame.iat
根据行索引和列索引获取元素值
>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... columns=['A', 'B', 'C']) >>> df A B C 0 0 2 3 1 0 4 1 2 10 20 30
>>> df.iat[1, 2] 1
或者
>>> df.iloc[0].iat[1] 2
pandas.DataFrame.loc
选取元素,或者行
>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8
选取元素
>>> df.loc['cobra', 'shield'] 2
选取行返回一个series
>>> df.loc['viper'] max_speed 4 shield 5 Name: viper, dtype: int64
选取行列返回dataframe
>>> df.loc[['viper', 'sidewinder']] max_speed shield viper 4 5 sidewinder 7 8 pandas.DataFrame.iloc >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }] >>> df = pd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000
按索引选取元素
>>> df.iloc[0, 1] 2
获取行的series
>>> type(df.iloc[0]) <class 'pandas.core.series.Series'> >>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: int64
到此这篇关于详解pandas获取Dataframe元素值的几种方法的文章就介绍到这了,更多相关pandas获取Dataframe元素值内容请搜索自学编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持自学编程网!
- 本文固定链接: https://zxbcw.cn/post/188641/
- 转载请注明:必须在正文中标注并保留原文链接
- QQ群: PHP高手阵营官方总群(344148542)
- QQ群: Yii2.0开发(304864863)