Keras运行迭代一定代数以后,速度越来越慢,经检查是因为在循环迭代过程中增加了新的计算节点,导致计算节点越来越多,内存被占用完,速度变慢。
判断是否在循环迭代过程中增加了新的计算节点,可以用下面的语句:
tf.Graph.finalize()
如果增加了新的计算节点,就会报错,如果没有报错,说明没有增加计算节点。
补充知识:win10下pytorch,tensorflow,keras+tf速度对比
采用GitHub上的代码
运行类似vgg模型,在cifar10上训练,结果朋友torch与tensorflow速度相当,远远快过keras。
pytorch | tensorflow | keras+tensorflow | |
version | 0.4.0 | 1.8.0 | Keras: 2.1.6 Tensorflow: 1.8.0 |
train time: | 1min 14s | 1min 9s | 1min 51s |
evaluate time: | 378 ms | 9.4 s | 826 ms |
以上这篇解决keras backend 越跑越慢问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持自学编程网。
- 本文固定链接: https://zxbcw.cn/post/189010/
- 转载请注明:必须在正文中标注并保留原文链接
- QQ群: PHP高手阵营官方总群(344148542)
- QQ群: Yii2.0开发(304864863)