1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | #!/usr/bin/env python # -*- coding: utf-8 -*- # @File : 自实现一个线性回归.py # @Author: 赵路仓 # @Date : 2020/4/12 # @Desc : # @Contact : 398333404@qq.com import os import tensorflow as tf def linear_regression(): """ 自实现一个线性回归 :return: """ # 命名空间 with tf.variable_scope( "prepared_data" ): # 准备数据 x = tf.random_normal(shape = [ 100 , 1 ], name = "Feature" ) y_true = tf.matmul(x, [[ 0.08 ]]) + 0.7 # x = tf.constant([[1.0], [2.0], [3.0]]) # y_true = tf.constant([[0.78], [0.86], [0.94]]) with tf.variable_scope( "create_model" ): # 2.构造函数 # 定义模型变量参数 weights = tf.Variable(initial_value = tf.random_normal(shape = [ 1 , 1 ], name = "Weights" )) bias = tf.Variable(initial_value = tf.random_normal(shape = [ 1 , 1 ], name = "Bias" )) y_predit = tf.matmul(x, weights) + bias with tf.variable_scope( "loss_function" ): # 3.构造损失函数 error = tf.reduce_mean(tf.square(y_predit - y_true)) with tf.variable_scope( "optimizer" ): # 4.优化损失 optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.01 ).minimize(error) # 收集变量 tf.summary.scalar( "error" , error) tf.summary.histogram( "weights" , weights) tf.summary.histogram( "bias" , bias) # 合并变量 merged = tf.summary.merge_all() # 创建saver对象 saver = tf.train.Saver() # 显式的初始化变量 init = tf.global_variables_initializer() # 开启会话 with tf.Session() as sess: # 初始化变量 sess.run(init) # 创建事件文件 file_writer = tf.summary.FileWriter( "E:/tmp/linear" , graph = sess.graph) # print(x.eval()) # print(y_true.eval()) # 查看初始化变量模型参数之后的值 print ( "训练前模型参数为:权重%f,偏置%f" % (weights.eval(), bias.eval())) # 开始训练 for i in range( 1000 ): sess.run(optimizer) print ( "第%d次参数为:权重%f,偏置%f,损失%f" % (i + 1 , weights.eval(), bias.eval(), error.eval())) # 运行合并变量操作 summary = sess.run(merged) # 将每次迭代后的变量写入事件 file_writer.add_summary(summary, i) # 保存模型 if i = = 999 : saver.save(sess, "./tmp/model/my_linear.ckpt" ) # # 加载模型 # if os.path.exists("./tmp/model/checkpoint"): # saver.restore(sess, "./tmp/model/my_linear.ckpt") print ( "参数为:权重%f,偏置%f,损失%f" % (weights.eval(), bias.eval(), error.eval())) pre = [[ 0.5 ]] prediction = tf.matmul(pre, weights) + bias sess.run(prediction) print (prediction.eval()) return None if __name__ = = "__main__" : linear_regression() |
以上就是python 实现一个简单的线性回归案例的详细内容,更多关于python 实现线性回归的资料请关注自学编程网其它相关文章!
- 本文固定链接: https://zxbcw.cn/post/202383/
- 转载请注明:必须在正文中标注并保留原文链接
- QQ群: PHP高手阵营官方总群(344148542)
- QQ群: Yii2.0开发(304864863)