直接上代码吧~
import numpy as np a = np.array([[30,40,70],[80,20,10],[50,90,60]]) print(a) print(np.nonzero(a)) [[30 40 70] [80 20 10] [50 90 60]] (array([0, 0, 0, 1, 1, 1, 2, 2, 2], dtype=int64), array([0, 1, 2, 0, 1, 2, 0, 1, 2], dtype=int64))
第一个array为x轴 第二个array为y轴
补充:【Numpy学习】python查找矩阵中不为0元素的索引(np.nonzero())
在用矩阵分解方法做模型时,需要对模型的结果做验证。
在验证过程中需要mask训练集、验证集和测试集。
这时候就需要原矩阵S SS中不为0元素和为0元素的索引值,这个方法在matlab中是find方法,在用python实现时就需要np.nonzero()。
下面看一段代码:
import numpy as np a = np.arange(12).reshape(3, 4) print(a) [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] print(np.nonzero(a)) (array([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]), array([1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]))
值得注意的是np.nonzero(a)输出的是两个array第一个array中的值指的是行,第二个指的是列。
如0,1表明第0行第一列的值不为0。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持自学编程网。
- 本文固定链接: https://zxbcw.cn/post/212239/
- 转载请注明:必须在正文中标注并保留原文链接
- QQ群: PHP高手阵营官方总群(344148542)
- QQ群: Yii2.0开发(304864863)