Pytorch中Softmax与LogSigmoid的对比
torch.nn.Softmax
作用:
1、将Softmax函数应用于输入的n维Tensor,重新改变它们的规格,使n维输出张量的元素位于[0,1]范围内,并求和为1。
2、返回的Tensor与原Tensor大小相同,值在[0,1]之间。
3、不建议将其与NLLLoss一起使用,可以使用LogSoftmax代替之。
4、Softmax的公式:
参数:
维度,待使用softmax计算的维度。
例子:
1 2 3 4 5 6 7 8 9 10 11 12 13 | # 随机初始化一个tensor a = torch.randn( 2 , 3 ) print (a) # 输出tensor # 初始化一个Softmax计算对象,在输入tensor的第2个维度上进行此操作 m = nn.Softmax(dim = 1 ) # 将a进行softmax操作 output = m(a) print (output) # 输出tensor tensor([[ 0.5283 , 0.3922 , - 0.0484 ], [ - 1.6257 , - 0.4775 , 0.5645 ]]) tensor([[ 0.4108 , 0.3585 , 0.2307 ], [ 0.0764 , 0.2408 , 0.6828 ]]) |
可以看见的是,无论输入的tensor中的值为正或为负,输出的tensor中的值均为正值,且加和为1。
当m的参数dim=1时,输出的tensor将原tensor按照行进行softmax操作;当m的参数为dim=0时,输出的tensor将原tensor按照列进行softmax操作。
深度学习拓展:
一般来说,Softmax函数会用于分类问题上。例如,在VGG等深度神经网络中,图像经过一系列卷积、池化操作后,我们可以得到它的特征向量,为了进一步判断此图像中的物体属于哪个类别,我们会将该特征向量变为:类别数 * 各类别得分 的形式,为了将得分转换为概率值,我们会将该向量再经过一层Softmax处理。
torch.nn.LogSigmoid
公式:
函数图:
可以见得,函数值在[0, -]之间,输入值越大函数值距离0越近,在一定程度上解决了梯度消失问题。
例子:
1 2 3 4 5 6 7 8 9 | a = [[ 0.5283 , 0.3922 , - 0.0484 ], [ - 1.6257 , - 0.4775 , 0.5645 ]] a = torch.tensor(a) lg = nn.LogSigmoid() lgoutput = lg(a) print (lgoutput) tensor([[ - 0.4635 , - 0.5162 , - 0.7176 ], [ - 1.8053 , - 0.9601 , - 0.4502 ]]) |
二者比较:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import torch import torch.nn as nn # 设置a为 2*3 的tensor a = [[ 0.5283 , 0.3922 , - 0.0484 ], [ - 1.6257 , - 0.4775 , 0.5645 ]] a = torch.tensor(a) print (a) print ( 'a.mean:' , a.mean( 1 , True )) # 输出a的 行平均值 m = nn.Softmax(dim = 1 ) # 定义Softmax函数,dim=1表示为按行计算 lg = nn.LogSigmoid() # 定义LogSigmoid函数 output = m(a) print (output) # 输出a经过Softmax的结果的行平均值 print ( 'output.mean:' , output.mean( 1 , True )) lg_output = lg(a) print (lg_output) # 输出a经过LogSigmoid的结果的行平均值 print ( 'lgouput.mean:' , lg_output.mean( 1 , True )) # 结果: tensor([[ 0.5283 , 0.3922 , - 0.0484 ], [ - 1.6257 , - 0.4775 , 0.5645 ]]) a.mean: tensor( - 0.1111 ) tensor([[ 0.4108 , 0.3585 , 0.2307 ], [ 0.0764 , 0.2408 , 0.6828 ]]) output.mean: tensor([[ 0.3333 ], [ 0.3333 ]]) # 经过Softmax的结果的行平均值 tensor([[ - 0.4635 , - 0.5162 , - 0.7176 ], [ - 1.8053 , - 0.9601 , - 0.4502 ]]) lgouput.mean: tensor([[ - 0.5658 ], [ - 1.0719 ]]) # 经过LogSigmoid的结果的行平均值 |
由上可知,继续考虑分类问题,相同的数据,经过Softmax和LogSigmoid处理后,若取最大概率值对应类别作为分类结果,那么:
1、第一行数据经过Softmax后,会选择第一个类别;经过LogSigmoid后,会选择第一个。
2、第二行数据经过Softmax后,会选择第三个类别;经过LogSigmoid后,会选择第三个。
3、一般来说,二者在一定程度上区别不是很大,由于sigmoid函数存在梯度消失问题,所以被使用的场景不多。
4、但是在多分类问题上,可以尝试选择Sigmoid函数来作为分类函数,因为Softmax在处理多分类问题上,会更容易出现各项得分十分相近的情况。瓶颈值可以根据实际情况定。
nn.Softmax()与nn.LogSoftmax()
nn.Softmax()计算出来的值,其和为1,也就是输出的是概率分布,具体公式如下:
这保证输出值都大于0,在0,1范围内。
而nn.LogSoftmax()公式如下:
由于softmax输出都是0-1之间的,因此logsofmax输出的是小于0的数,
softmax求导:
logsofmax求导:
例子:
1 2 3 | import torch.nn as nn import torch import numpy as np |
1 2 3 4 5 6 7 8 9 10 | layer1 = nn.Softmax() layer2 = nn.LogSoftmax() input = np.asarray([ 2 , 3 ]) input = Variable(torch.Tensor(input)) output1 = layer1(input) output2 = layer2(input) print ( 'output1:' ,output1) print ( 'output2:' ,output2) |
输出:
output1: Variable containing:
0.2689
0.7311
[torch.FloatTensor of size 2]output2: Variable containing:
-1.3133
-0.3133
[torch.FloatTensor of size 2]
以上为个人经验,希望能给大家一个参考,也希望大家多多支持自学编程网。
- 本文固定链接: https://zxbcw.cn/post/214227/
- 转载请注明:必须在正文中标注并保留原文链接
- QQ群: PHP高手阵营官方总群(344148542)
- QQ群: Yii2.0开发(304864863)