首页 > 编程语言 > 教你java面试时如何聊单例模式
2021
09-29

教你java面试时如何聊单例模式

NO.1 单例模式的应用场景

单例模式(Singleton Pattern)是指确保一个类在任何情况下都绝对只有一个实例,并提供一个全局访问点。单例模式是创建型模式。单例模式在现实生活中应用也非常广泛。例如公司 CEO、部门经理等。在 J2EE 标准中,ServletContext、ServletContextConfig 等;在 Spring 框架应用中 ApplicationContext;数据库的连接池也都是单例形式。

NO.2 饿汉式单例

先来看单例模式的类结构图:

饿汉式单例是在类加载的时候就立即初始化,并且创建单例对象。绝对线程安全,在线程还没出现以前就是实例化了,不可能存在访问安全问题。

优点:没有加任何的锁、执行效率比较高,在用户体验上来说,比懒汉式更好。

缺点:类加载的时候就初始化,不管用与不用都占着空间,浪费了内存,有可能占着茅坑不拉屎。

Spring 中 IOC 容器 ApplicationContext 本身就是典型的饿汉式单例。接下来看一段代码:

public class HungrySingleton {
     //先静态、后动态
     //先属性、后方法
     //先上后下
     private static final HungrySingleton hungrySingleton = new HungrySingleton();
     private HungrySingleton(){}
     public static HungrySingleton getInstance(){
         return hungrySingleton;
     }
}

还有另外一种写法,利用静态代码块的机制:

//饿汉式静态块单例
public class HungryStaticSingleton {
    private static final HungryStaticSingleton hungrySingleton;
    static {
        hungrySingleton = new HungryStaticSingleton();
    }
    private HungryStaticSingleton(){}
    public static HungryStaticSingleton getInstance(){
        return hungrySingleton;
    }
}

这两种写法都非常的简单,也非常好理解,饿汉式适用在单例对象较少的情况。下面我们来看性能更优的写法。

NO.3 懒汉式单例

懒汉式单例的特点是:被外部类调用的时候内部类才会加载,下面看懒汉式单例的简单实现 LazySimpleSingleton:

//懒汉式单例
//在外部需要使用的时候才进行实例化
public class LazySimpleSingleton {
    private LazySimpleSingleton(){}
    //静态块,公共内存区域
    private static LazySimpleSingleton lazy = null;
    public static LazySimpleSingleton getInstance(){
        if(lazy == null){
        lazy = new LazySimpleSingleton();
         }
        return lazy;
    }
}

然后写一个线程类 ExectorThread 类:

public class ExectorThread implements Runnable{
    @Override
    public void run() {
        LazySimpleSingleton singleton = LazySimpleSingleton.getInstance();
        System.out.println(Thread.currentThread().getName() + ":" + singleton);
    }
}

客户端测试代码:

public class LazySimpleSingletonTest {
    public static void main(String[] args) {
        Thread t1 = new Thread(new ExectorThread());
        Thread t2 = new Thread(new ExectorThread());
        t1.start();
        t2.start();
        System.out.println("End");
    }
}

运行结果

​​​​​​​​​​​​​​

一定几率出现创建两个不同结果的情况,意味着上面的单例存在线程安全隐患。现在我们用调试运行再具体看一下,教给大家一个新技能,用线程模式调试,手动控制线程的执行顺序来跟踪内存的变化状态。先给 ExectorThread 类打上断点:

右键点击断点,切换为 Thread 模式,如下图:

然后,给 LazySimpleSingleton 类打上断点,同样标记为 Thread 模式:

切回到客户端测试代码,同样也打上断点,同时改为 Thread 模式,如下图:

开始 debug 之后,会看到 debug 控制台可以自由切换 Thread 的运行状态:

通过不断切换线程,并观测其内存状态,我们发现在线程环境下 LazySimpleSingleton被实例化了两次。有时,我们得到的运行结果可能是相同的两个对象,实际上是被后面执行的线程覆盖了,我们看到了一个假象,线程安全隐患依旧存在。那么,我们如何来优化代码,使得懒汉式单例在线程环境下安全呢?来看下面的代码,给 getInstance()加上 synchronized 关键字,是这个方法变成线程同步方法:

public class LazySimpleSingleton {
  private LazySimpleSingleton(){}
  //静态块,公共内存区域
  private static LazySimpleSingleton lazy = null;
  public synchronized static LazySimpleSingleton getInstance(){
    if(lazy == null){
    lazy = new LazySimpleSingleton();
    }
    return lazy;
  }
}

这时候,我们再来调试。当我们将其中一个线程执行并调用 getInstance()方法时,另一个线程在调用 getInstance()方法,线程的状态由 RUNNING 变成了 MONITOR,出现阻塞。直到第一个线程执行完,第二个线程才恢复 RUNNING 状态继续调用 getInstance()方法。如下图所示:

完美的展现了 synchronized 监视锁的运行状态,线程安全的问题便解决了。但是,用synchronized 加锁,在线程数量比较多情况下,如果 CPU 分配压力上升,会导致大批量线程出现阻塞,从而导致程序运行性能大幅下降。那么,有没有一种更好的方式,既兼顾线程安全又提升程序性能呢?答案是肯定的。我们来看双重检查锁的单例模式:

public class LazyDoubleCheckSingleton {
    private volatile static LazyDoubleCheckSingleton lazy = null;
    private LazyDoubleCheckSingleton(){}
      public static LazyDoubleCheckSingleton getInstance(){            
if(lazy == null){
               synchronized (LazyDoubleCheckSingleton.class){
                if(lazy == null){
                    lazy = new LazyDoubleCheckSingleton();                    
                    //1.分配内存给这个对象
                    //2.初始化对象
                    //3.设置 lazy 指向刚分配的内存地址                }
            }
      }
      return lazy;
    }
}

现在,我们来断点调试:

当第一个线程调用 getInstance()方法时,第二个线程也可以调用 getInstance()。当第一个线程执行到 synchronized 时会上锁,第二个线程就会变成 MONITOR 状态,出现阻

塞。此时,阻塞并不是基于整个 LazySimpleSingleton 类的阻塞,而是在 getInstance()方法内部阻塞,只要逻辑不是太复杂,对于调用者而言感知不到。但是,用到 synchronized 关键字,总归是要上锁,对程序性能还是存在一定影响的。难道就真的没有更好的方案吗?当然是有的。我们可以从类初始化角度来考虑,看下面的代码,采用静态内部类的方式:

//这种形式兼顾饿汉式的内存浪费,也兼顾synchronized性能问题
//完美地屏蔽了这两个缺点
public class LazyInnerClassSingleton {
 //默认使用LazyInnerClassGeneral的时候,会先初始化内部类
 //如果没使用的话,内部类是不加载的
    private LazyInnerClassSingleton(){}
 //每一个关键字都不是多余的
 //static 是为了使单例的空间共享
 //保证这个方法不会被重写,重载
 public static final LazyInnerClassSingleton getInstance(){
 //在返回结果以前,一定会先加载内部类
 return LazyHolder.LAZY;
 }
​
 //默认不加载
 private static class LazyHolder{
 private static final LazyInnerClassSingleton LAZY = new LazyInnerClassSingleton();
 }
}

这种形式兼顾饿汉式的内存浪费,也兼顾 synchronized 性能问题。内部类一定是要在方

法调用之前初始化,巧妙地避免了线程安全问题。由于这种方式比较简单,我们就不带

大家一步一步调试了。

NO.4 反射破坏单例

大家有没有发现,上面介绍的单例模式的构造方法除了加上 private 以外,没有做任何处理。如果我们使用反射来调用其构造方法,然后,再调用 getInstance()方法,应该就会两个不同的实例。现在来看一段测试代码,以 LazyInnerClassSingleton 为例:

public class LazyInnerClassSingletonTest {
​
    public static void main(String[] args) {
        try{
            //很无聊的情况下,进行破坏
            Class<?> clazz = LazyInnerClassSingleton.class;
​
            //通过反射拿到私有的构造方法
            Constructor c = clazz.getDeclaredConstructor(null);
            //强制访问,强吻,不愿意也要吻
            c.setAccessible(true);
​
            //暴力初始化
            Object o1 = c.newInstance();
​
            //调用了两次构造方法,相当于new了两次
            //犯了原则性问题,
            Object o2 = c.newInstance();
​
            System.out.println(o1 == o2);
//            Object o2 = c.newInstance();
        }catch (Exception e){
            e.printStackTrace();
        }
    }
}

运行结果如下:

显然,是创建了两个不同的实例。现在,我们在其构造方法中做一些限制,一旦出现多次重复创建,则直接抛出异常。来看优化后的代码:

码:
//这种形式兼顾饿汉式的内存浪费,也兼顾synchronized性能问题
//完美地屏蔽了这两个缺点
//史上最牛B的单例模式的实现方式
public class LazyInnerClassSingleton {
    //默认使用LazyInnerClassGeneral的时候,会先初始化内部类
    //如果没使用的话,内部类是不加载的
    private LazyInnerClassSingleton(){
        if(LazyHolder.LAZY != null){
            throw new RuntimeException("不允许创建多个实例");
        }
    }
​    //每一个关键字都不是多余的
    //static 是为了使单例的空间共享
    //保证这个方法不会被重写,重载
    public static final LazyInnerClassSingleton getInstance(){
        //在返回结果以前,一定会先加载内部类
        return LazyHolder.LAZY;
    }
​    //默认不加载
    private static class LazyHolder{
        private static final LazyInnerClassSingleton LAZY = new LazyInnerClassSingleton();
    }
}

再运行测试代码,会得到以下结果:

至此,史上最牛 B 的单例写法便大功告成。

NO.5 序列化破坏单例

当我们将一个单例对象创建好,有时候需要将对象序列化然后写入到磁盘,下次使用时再从磁盘中读取到对象,反序列化转化为内存对象。反序列化后的对象会重新分配内存,即重新创建。那如果序列化的目标的对象为单例对象,就违背了单例模式的初衷,相当于破坏了单例,来看一段代码:

//反序列化时导致单例破坏
public class SeriableSingleton implements Serializable {
     //序列化就是说把内存中的状态通过转换成字节码的形式
     //从而转换一个 IO 流,写入到其他地方(可以是磁盘、网络 IO)
     //内存中状态给永久保存下来了
     //反序列化
     //讲已经持久化的字节码内容,转换为 IO 流
     //通过 IO 流的读取,进而将读取的内容转换为 Java 对象
     //在转换过程中会重新创建对象 new
     public final static SeriableSingleton INSTANCE = new SeriableSingleton();
     private SeriableSingleton(){}
     public static SeriableSingleton getInstance(){
     return INSTANCE;
 }
}

运行结果

运行结果中,可以看出,反序列化后的对象和手动创建的对象是不一致的,实例化了两次,违背了单例的设计初衷。那么,我们如何保证序列化的情况下也能够实现单例?其实很简单,只需要增加 readResolve()方法即可。来看优化代码:

public class SeriableSingleton implements Serializable {
​
    //序列化就是说把内存中的状态通过转换成字节码的形式
    //从而转换一个IO流,写入到其他地方(可以是磁盘、网络IO)
    //内存中状态给永久保存下来了
​    //反序列化
    //讲已经持久化的字节码内容,转换为IO流
    //通过IO流的读取,进而将读取的内容转换为Java对象
    //在转换过程中会重新创建对象new
​    public  final static SeriableSingleton INSTANCE = new SeriableSingleton();
    private SeriableSingleton(){}
​    public static SeriableSingleton getInstance(){
        return INSTANCE;
    }
​    private  Object readResolve(){
        return  INSTANCE;
    }
​}

再看运行结果:

大家一定会关心这是什么原因呢?为什么要这样写?看上去很神奇的样子,也让人有些费 解 。不 如 , 我 们 一 起 来 看 看 JDK 的 源 码 实 现 以 一 清 二 楚 了 。我 们 进 入ObjectInputStream 类的 readObject()方法,代码如下:

public final Object readObject()
    throws IOException, ClassNotFoundException
{
        if (enableOverride) {
        return readObjectOverride();
        }
       // if nested read, passHandle contains handle of enclosing object
       int outerHandle = passHandle;
        try {
        Object obj = readObject0(false);
        handles.markDependency(outerHandle, passHandle);
        ClassNotFoundException ex = handles.lookupException(passHandle);
        if (ex != null) {
        throw ex;
        }
        if (depth == 0) {
        vlist.doCallbacks();
        }
        return obj;
    } finally {
    passHandle = outerHandle;
        if (closed && depth == 0) {
        clear();
        }
    }
}

我们发现在readObject中又调用了我们重写的readObject0()方法。进入readObject0()方法,代码如下:

private Object readObject0(boolean unshared) throws IOException {
          ...
          case TC_OBJECT:
          return checkResolve(readOrdinaryObject(unshared));
          ...
}

我们看到 TC_OBJECTD 中判断,调用了 ObjectInputStream 的 readOrdinaryObject()方法,我们继续进入看源码:

private Object readOrdinaryObject(boolean unshared)
    throws IOException
    {
    if (bin.readByte() != TC_OBJECT) {
    throw new InternalError();
    }
    ObjectStreamClass desc = readClassDesc(false);
    desc.checkDeserialize();
    Class<?> cl = desc.forClass();
    if (cl == String.class || cl == Class.class
          || cl == ObjectStreamClass.class) {
        throw new InvalidClassException("invalid class descriptor");
    }
    Object obj;
    try {
        obj = desc.isInstantiable() ? desc.newInstance() : null;
    } catch (Exception ex) {
        throw (IOException) new InvalidClassException(
         desc.forClass().getName(),
          "unable to create instance").initCause(ex);
    }
    ...
    return obj;
}

发现调用了 ObjectStreamClass 的 isInstantiable()方法,而 isInstantiable()里面的代码如下:

boolean isInstantiable() {
    requireInitialized();
    return (cons != null);
}

代码非常简单,就是判断一下构造方法是否为空,构造方法不为空就返回 true。意味着,只要有无参构造方法就会实例化。这时候,其实还没有找到为什么加上 readResolve()方法就避免了单例被破坏的真正原因。我再回到ObjectInputStream 的 readOrdinaryObject()方法继续往下看:

private Object readOrdinaryObject(boolean unshared)
throws IOException
{
    if (bin.readByte() != TC_OBJECT) {
    throw new InternalError();
    }
    ObjectStreamClass desc = readClassDesc(false);
    desc.checkDeserialize();
    Class<?> cl = desc.forClass();
    if (cl == String.class || cl == Class.class
    || cl == ObjectStreamClass.class) {
    throw new InvalidClassException("invalid class descriptor");
    }
    Object obj;
    try {
    obj = desc.isInstantiable() ? desc.newInstance() : null;
    } catch (Exception ex) {
    throw (IOException) new InvalidClassException(
    desc.forClass().getName(),
    "unable to create instance").initCause(ex);
    }
    ...
    if (obj != null &&
    handles.lookupException(passHandle) == null &&
    desc.hasReadResolveMethod())
    {
    Object rep = desc.invokeReadResolve(obj);
    if (unshared && rep.getClass().isArray()) {
    rep = cloneArray(rep);
    }
    if (rep != obj) {
    // Filter the replacement object
    if (rep != null) {
    if (rep.getClass().isArray()) {
    filterCheck(rep.getClass(), Array.getLength(rep));
    } else {
    filterCheck(rep.getClass(), -1);
    }
    }
    handles.setObject(passHandle, obj = rep);
    }
  }
return obj;
}

判断无参构造方法是否存在之后,又调用了 hasReadResolveMethod()方法,来看代码:

boolean hasReadResolveMethod() {
    requireInitialized();
    return (readResolveMethod != null);
}

逻辑非常简单,就是判断 readResolveMethod 是否为空,不为空就返回 true。那么readResolveMethod 是在哪里赋值的呢?通过全局查找找到了赋值代码在私有方法ObjectStreamClass()方法中给 readResolveMethod 进行赋值,来看代码:

readResolveMethod = getInheritableMethod(
    cl, "readResolve", null, Object.class);

上面的逻辑其实就是通过反射找到一个无参的 readResolve()方法,并且保存下来。现在

再 回 到 ObjectInputStream的 readOrdinaryObject() 方 法 继 续 往 下 看 , 如 果

readResolve()存在则调用 invokeReadResolve()方法,来看代码:

Object invokeReadResolve(Object obj)
    throws IOException, UnsupportedOperationException
    {
    requireInitialized();
    if (readResolveMethod != null) {
        try {
            return readResolveMethod.invoke(obj, (Object[]) null);
    } catch (InvocationTargetException ex) {
            Throwable th = ex.getTargetException();
            if (th instanceof ObjectStreamException) {
        throw (ObjectStreamException) th;
      } else {
        throwMiscException(th);
        throw new InternalError(th); // never reached
      }
    } catch (IllegalAccessException ex) {
    // should not occur, as access checks have been suppressed
    throw new InternalError(ex);
    }
    } else {
    throw new UnsupportedOperationException();
    }
}

​​​​我们可以看到在invokeReadResolve()方法中用反射调用了readResolveMethod方法。通过 JDK 源码分析我们可以看出,虽然,增加 readResolve()方法返回实例,解决了单例被破坏的问题。但是,我们通过分析源码以及调试,我们可以看到实际上实例化了两次,只不过新创建的对象没有被返回而已。那如果,创建对象的动作发生频率增大,就意味着内存分配开销也就随之增大,难道真的就没办法从根本上解决问题吗?下面我们来注册式单例也许能帮助到你

NO.6 注册式单例

注册式单例又称为登记式单例,就是将每一个实例都登记到某一个地方,使用唯一的标识获取实例。注册式单例有两种写法:一种为容器缓存,一种为枚举登记。先来看枚举式单例的写法,来看代码,创建 EnumSingleton 类:

public enum EnumSingleton {
    INSTANCE;
    private Object data;
    public Object getData() {
        return data;
    }
    public void setData(Object data) {
        this.data = data;
    }
    public static EnumSingleton getInstance(){
        return INSTANCE;
    }
}

来看测试代码:

public class EnumSingletonTest {
    public static void main(String[] args) {
        try {
            EnumSingleton instance1 = null;
            EnumSingleton instance2 = EnumSingleton.getInstance();
            instance2.setData(new Object());
            FileOutputStream fos = new FileOutputStream("EnumSingleton.obj");
            ObjectOutputStream oos = new ObjectOutputStream(fos);
            oos.writeObject(instance2);
            oos.flush();
            oos.close();
            FileInputStream fis = new FileInputStream("EnumSingleton.obj");
            ObjectInputStream ois = new ObjectInputStream(fis);
            instance1 = (EnumSingleton) ois.readObject();
            ois.close();
            System.out.println(instance1.getData());
            System.out.println(instance2.getData());
            System.out.println(instance1.getData() == instance2.getData());
         }catch (Exception e){
            e.printStackTrace();
         }
      }
}

运行结果:

没有做任何处理,我们发现运行结果和我们预期的一样。那么枚举式单例如此神奇,的神秘之处在哪里体现呢?下面我们通过分析源码来揭开它的神秘面纱。下载一个非常好用的 Java 反编译工具 Jad(下载地址:https://varaneckas.com/jad/),解压后配置好环境变量(这里不做详细介绍),就可以使用命令行调用了。找到工程所在的 class 目录,复制 EnumSingleton.class 所在的路径,如下图:

然后切回到命令行,切换到工程所在的 Class 目录,输入命令 jad 后面输入复制好的路径,我们会在 Class 目录下会多一个 EnumSingleton.jad 文件。打开 EnumSingleton.jad文件我们惊奇又巧妙地发现有如下代码:

static
{
    INSTANCE = new EnumSingleton("INSTANCE", 0);
    $VALUES = (new EnumSingleton[] {
        INSTANCE
    });
}

原来,枚举式单例在静态代码块中就给 INSTANCE 进行了赋值,是饿汉式单例的实现。至此,我们还可以试想,序列化我们能否破坏枚举式单例呢?我们不妨再来看一下 JDK源码,还是回到 ObjectInputStream 的 readObject0()方法:

private Object readObject0(boolean unshared) throws IOException {
          ...
          case TC_ENUM:
          return checkResolve(readEnum(unshared));
          ...
}

我们看到在 readObject0()中调用了 readEnum()方法,来看 readEnum()中代码实现:

private Enum<?> readEnum(boolean unshared) throws IOException {
        if (bin.readByte() != TC_ENUM) {
            throw new InternalError();
        }
        ObjectStreamClass desc = readClassDesc(false);
        if (!desc.isEnum()) {
            throw new InvalidClassException("non-enum class: " + desc);
        }
        int enumHandle = handles.assign(unshared ? unsharedMarker : null);
        ClassNotFoundException resolveEx = desc.getResolveException();
        if (resolveEx != null) {
            handles.markException(enumHandle, resolveEx);
        }
        String name = readString(false);
        Enum<?> result = null;
        Class<?> cl = desc.forClass();
        if (cl != null) {
            try {
            @SuppressWarnings("unchecked")
            Enum<?> en = Enum.valueOf((Class)cl, name);
            result = en;
        } catch (IllegalArgumentException ex) {
        throw (IOException) new InvalidObjectException(
        "enum constant " + name + " does not exist in " +
        cl).initCause(ex);
        }
        if (!unshared) {
            handles.setObject(enumHandle, result);
            }
        }
        handles.finish(enumHandle);
        passHandle = enumHandle;
        return result;
}

我们发现枚举类型其实通过类名和 Class 对象类找到一个唯一的枚举对象。因此,枚举对象不可能被类加载器加载多次。那么反射是否能破坏枚举式单例呢?来看一段测 试代码:

public static void main(String[] args) {
    try {
        Class clazz = EnumSingleton.class;
        Constructor c = clazz.getDeclaredConstructor();
        c.newInstance();
    }catch (Exception e){
        e.printStackTrace();
    }
}

运行结果:

报的是 java.lang.NoSuchMethodException 异常,意思是没找到无参的构造方法。这时候,我们打开 java.lang.Enum 的源码代码,查看它的构造方法,只有一个 protected的构造方法,代码如下:

protected Enum(String name, int ordinal) {
      this.name = name;
      this.ordinal = ordinal;
}

那我们再来做一个这样的测试:

public static void main(String[] args) {
    try {
        Class clazz = EnumSingleton.class;
        Constructor c = clazz.getDeclaredConstructor(String.class,int.class);
        c.setAccessible(true);
        EnumSingleton enumSingleton = (EnumSingleton)c.newInstance("Tom",666);
    }catch (Exception e){
        e.printStackTrace();
    }
}

运行结果:

这时错误已经非常明显了,告诉我们 Cannot reflectively create enum objects,不能用反射来创建枚举类型。还是习惯性地想来看看 JDK 源码,进入 Constructor 的newInstance()方法:

public T newInstance(Object ... initargs)
 throws InstantiationException, IllegalAccessException,
 IllegalArgumentException, InvocationTargetException
{
 if (!override) {
 if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) {
 Class<?> caller = Reflection.getCallerClass();
 checkAccess(caller, clazz, null, modifiers);
 }
 }
 if ((clazz.getModifiers() & Modifier.ENUM) != 0)
 throw new IllegalArgumentException("Cannot reflectively create enum objects");
 ConstructorAccessor ca = constructorAccessor; // read volatile
 if (ca == null) {
 ca = acquireConstructorAccessor();
 }
 @SuppressWarnings("unchecked")
 T inst = (T) ca.newInstance(initargs);
 return inst;
}

在 newInstance()方法中做了强制性的判断,如果修饰符是 Modifier.ENUM 枚举类型,直接抛出异常。到这为止,我们是不是已经非常清晰明了呢?枚举式单例也是《EffectiveJava》书中推荐的一种单例实现写法。在 JDK 枚举的语法特殊性,以及反射也为枚举保驾护航,让枚举式单例成为一种比较优雅的实现。

接下来看注册式单例还有另一种写法,容器缓存的写法,创建 ContainerSingleton 类:

public class ContainerSingleton {
    private ContainerSingleton(){}
    private static Map<String,Object> ioc = new ConcurrentHashMap<String,Object>();
    public static Object getBean(String className){
        synchronized (ioc) {
        if (!ioc.containsKey(className)) {
            Object obj = null;
            try {
                obj = Class.forName(className).newInstance();
                ioc.put(className, obj);
            } catch (Exception e) {
                e.printStackTrace();
            }
            return obj;
        } else {
            return ioc.get(className);
            }
        }
    }
}

容器式写法适用于创建实例非常多的情况,便于管理。但是,是非线程安全的。到此,注册式单例介绍完毕。我们还可以来看看 Spring 中的容器式单例的实现代码:

public abstract class AbstractAutowireCapableBeanFactory extends AbstractBeanFactory
      implements AutowireCapableBeanFactory {
      /** Cache of unfinished FactoryBean instances: FactoryBean name --> BeanWrapper */
      private final Map<String, BeanWrapper> factoryBeanInstanceCache = new ConcurrentHashMap<>(16);
      ...
}

NO.7 ThreadLocal 线程单例

最后给大家赠送一个彩蛋,讲讲线程单例实现 ThreadLocal。ThreadLocal 不能保证其创建的对象是全局唯一,但是能保证在单个线程中是唯一的,天生的线程安全。下面我们来看代码:

public class ThreadLocalSingleton {
    private static final ThreadLocal<ThreadLocalSingleton> threadLocalInstance =
    new ThreadLocal<ThreadLocalSingleton>(){
        @Override
        protected ThreadLocalSingleton initialValue() {
        return new ThreadLocalSingleton();
        }
    };
    private ThreadLocalSingleton(){}
    public static ThreadLocalSingleton getInstance(){
          return threadLocalInstance.get();
    }
}

写一下测试代码:

public static void main(String[] args) {
      System.out.println(ThreadLocalSingleton.getInstance());
      System.out.println(ThreadLocalSingleton.getInstance());
      System.out.println(ThreadLocalSingleton.getInstance());
      System.out.println(ThreadLocalSingleton.getInstance());
      System.out.println(ThreadLocalSingleton.getInstance());
      Thread t1 = new Thread(new ExectorThread());
      Thread t2 = new Thread(new ExectorThread());
      t1.start();
      t2.start();
      System.out.println("End");
}

运行结果:

我们发现,在主线程 main 中无论调用多少次,获取到的实例都是同一个,都在两个子线程中分别获取到了不同的实例。那么 ThreadLocal 是如果实现这样的效果的呢?我们知道上面的单例模式为了达到线程安全的目的,给方法上锁,以时间换空间。ThreadLocal将所有的对象全部放在 ThreadLocalMap 中,为每个线程都提供一个对象,实际上是以空间换时间来实现线程间隔离的。

​​​​​​​总结

单例模式可以保证内存里只有一个实例,减少了内存开销;可以避免对资源的多重占用。单例模式看起来非常简单,实现起来其实也非常简单。但是在面试中却是一个高频面试题。希望小伙伴们通过本章的学习,可以对您有所帮助,希望您可以多多关注自学编程网的更多内容!

编程技巧