简介
pandas中的DF数据类型可以像数据库表格一样进行groupby操作。通常来说groupby操作可以分为三部分:分割数据,应用变换和和合并数据。
本文将会详细讲解Pandas中的groupby操作。
分割数据
分割数据的目的是将DF分割成为一个个的group。为了进行groupby操作,在创建DF的时候需要指定相应的label:
df = pd.DataFrame( ...: { ...: "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], ...: "B": ["one", "one", "two", "three", "two", "two", "one", "three"], ...: "C": np.random.randn(8), ...: "D": np.random.randn(8), ...: } ...: ) ...: df Out[61]: A B C D 0 foo one -0.490565 -0.233106 1 bar one 0.430089 1.040789 2 foo two 0.653449 -1.155530 3 bar three -0.610380 -0.447735 4 foo two -0.934961 0.256358 5 bar two -0.256263 -0.661954 6 foo one -1.132186 -0.304330 7 foo three 2.129757 0.445744
默认情况下,groupby的轴是x轴。可以一列group,也可以多列group:
In [8]: grouped = df.groupby("A") In [9]: grouped = df.groupby(["A", "B"])
多index
在0.24版本中,如果我们有多index,可以从中选择特定的index进行group:
In [10]: df2 = df.set_index(["A", "B"]) In [11]: grouped = df2.groupby(level=df2.index.names.difference(["B"])) In [12]: grouped.sum() Out[12]: C D A bar -1.591710 -1.739537 foo -0.752861 -1.402938
get_group
get_group 可以获取分组之后的数据:
In [24]: df3 = pd.DataFrame({"X": ["A", "B", "A", "B"], "Y": [1, 4, 3, 2]}) In [25]: df3.groupby(["X"]).get_group("A") Out[25]: X Y 0 A 1 2 A 3 In [26]: df3.groupby(["X"]).get_group("B") Out[26]: X Y 1 B 4 3 B 2
dropna
默认情况下,NaN数据会被排除在groupby之外,通过设置 dropna=False 可以允许NaN数据:
In [27]: df_list = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]] In [28]: df_dropna = pd.DataFrame(df_list, columns=["a", "b", "c"]) In [29]: df_dropna Out[29]: a b c 0 1 2.0 3 1 1 NaN 4 2 2 1.0 3 3 1 2.0 2 # Default ``dropna`` is set to True, which will exclude NaNs in keys In [30]: df_dropna.groupby(by=["b"], dropna=True).sum() Out[30]: a c b 1.0 2 3 2.0 2 5 # In order to allow NaN in keys, set ``dropna`` to False In [31]: df_dropna.groupby(by=["b"], dropna=False).sum() Out[31]: a c b 1.0 2 3 2.0 2 5 NaN 1 4
groups属性
groupby对象有个groups属性,它是一个key-value字典,key是用来分类的数据,value是分类对应的值。
In [34]: grouped = df.groupby(["A", "B"]) In [35]: grouped.groups Out[35]: {('bar', 'one'): [1], ('bar', 'three'): [3], ('bar', 'two'): [5], ('foo', 'one'): [0, 6], ('foo', 'three'): [7], ('foo', 'two'): [2, 4]} In [36]: len(grouped) Out[36]: 6
index的层级
对于多级index对象,groupby可以指定group的index层级:
In [40]: arrays = [ ....: ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ....: ["one", "two", "one", "two", "one", "two", "one", "two"], ....: ] ....: In [41]: index = pd.MultiIndex.from_arrays(arrays, names=["first", "second"]) In [42]: s = pd.Series(np.random.randn(8), index=index) In [43]: s Out[43]: first second bar one -0.919854 two -0.042379 baz one 1.247642 two -0.009920 foo one 0.290213 two 0.495767 qux one 0.362949 two 1.548106 dtype: float64
group第一级:
In [44]: grouped = s.groupby(level=0) In [45]: grouped.sum() Out[45]: first bar -0.962232 baz 1.237723 foo 0.785980 qux 1.911055 dtype: float64
group第二级:
In [46]: s.groupby(level="second").sum() Out[46]: second one 0.980950 two 1.991575 dtype: float64
group的遍历
得到group对象之后,我们可以通过for语句来遍历group:
In [62]: grouped = df.groupby('A') In [63]: for name, group in grouped: ....: print(name) ....: print(group) ....: bar A B C D 1 bar one 0.254161 1.511763 3 bar three 0.215897 -0.990582 5 bar two -0.077118 1.211526 foo A B C D 0 foo one -0.575247 1.346061 2 foo two -1.143704 1.627081 4 foo two 1.193555 -0.441652 6 foo one -0.408530 0.268520 7 foo three -0.862495 0.024580
如果是多字段group,group的名字是一个元组:
In [64]: for name, group in df.groupby(['A', 'B']): ....: print(name) ....: print(group) ....: ('bar', 'one') A B C D 1 bar one 0.254161 1.511763 ('bar', 'three') A B C D 3 bar three 0.215897 -0.990582 ('bar', 'two') A B C D 5 bar two -0.077118 1.211526 ('foo', 'one') A B C D 0 foo one -0.575247 1.346061 6 foo one -0.408530 0.268520 ('foo', 'three') A B C D 7 foo three -0.862495 0.02458 ('foo', 'two') A B C D 2 foo two -1.143704 1.627081 4 foo two 1.193555 -0.441652
聚合操作
分组之后,就可以进行聚合操作:
In [67]: grouped = df.groupby("A") In [68]: grouped.aggregate(np.sum) Out[68]: C D A bar 0.392940 1.732707 foo -1.796421 2.824590 In [69]: grouped = df.groupby(["A", "B"]) In [70]: grouped.aggregate(np.sum) Out[70]: C D A B bar one 0.254161 1.511763 three 0.215897 -0.990582 two -0.077118 1.211526 foo one -0.983776 1.614581 three -0.862495 0.024580 two 0.049851 1.185429
对于多index数据来说,默认返回值也是多index的。如果想使用新的index,可以添加 as_index = False:
In [71]: grouped = df.groupby(["A", "B"], as_index=False) In [72]: grouped.aggregate(np.sum) Out[72]: A B C D 0 bar one 0.254161 1.511763 1 bar three 0.215897 -0.990582 2 bar two -0.077118 1.211526 3 foo one -0.983776 1.614581 4 foo three -0.862495 0.024580 5 foo two 0.049851 1.185429 In [73]: df.groupby("A", as_index=False).sum() Out[73]: A C D 0 bar 0.392940 1.732707 1 foo -1.796421 2.824590
上面的效果等同于reset_index
In [74]: df.groupby(["A", "B"]).sum().reset_index() grouped.size() 计算group的大小: In [75]: grouped.size() Out[75]: A B size 0 bar one 1 1 bar three 1 2 bar two 1 3 foo one 2 4 foo three 1 5 foo two 2
grouped.describe() 描述group的信息:
In [76]: grouped.describe() Out[76]: C ... D count mean std min 25% 50% ... std min 25% 50% 75% max 0 1.0 0.254161 NaN 0.254161 0.254161 0.254161 ... NaN 1.511763 1.511763 1.511763 1.511763 1.511763 1 1.0 0.215897 NaN 0.215897 0.215897 0.215897 ... NaN -0.990582 -0.990582 -0.990582 -0.990582 -0.990582 2 1.0 -0.077118 NaN -0.077118 -0.077118 -0.077118 ... NaN 1.211526 1.211526 1.211526 1.211526 1.211526 3 2.0 -0.491888 0.117887 -0.575247 -0.533567 -0.491888 ... 0.761937 0.268520 0.537905 0.807291 1.076676 1.346061 4 1.0 -0.862495 NaN -0.862495 -0.862495 -0.862495 ... NaN 0.024580 0.024580 0.024580 0.024580 0.024580 5 2.0 0.024925 1.652692 -1.143704 -0.559389 0.024925 ... 1.462816 -0.441652 0.075531 0.592714 1.109898 1.627081 [6 rows x 16 columns]
通用聚合方法
下面是通用的聚合方法:
函数 | 描述 |
---|---|
mean() | 平均值 |
sum() | 求和 |
size() | 计算size |
count() | group的统计 |
std() | 标准差 |
var() | 方差 |
sem() | 均值的标准误 |
describe() | 统计信息描述 |
first() | 第一个group值 |
last() | 最后一个group值 |
nth() | 第n个group值 |
min() | 最小值 |
max() | 最大值 |
同时使用多个聚合方法
可以同时指定多个聚合方法:
In [81]: grouped = df.groupby("A") In [82]: grouped["C"].agg([np.sum, np.mean, np.std]) Out[82]: sum mean std A bar 0.392940 0.130980 0.181231 foo -1.796421 -0.359284 0.912265
可以重命名:
In [84]: ( ....: grouped["C"] ....: .agg([np.sum, np.mean, np.std]) ....: .rename(columns={"sum": "foo", "mean": "bar", "std": "baz"}) ....: ) ....: Out[84]: foo bar baz A bar 0.392940 0.130980 0.181231 foo -1.796421 -0.359284 0.912265
NamedAgg
NamedAgg 可以对聚合进行更精准的定义,它包含 column 和aggfunc 两个定制化的字段。
In [88]: animals = pd.DataFrame( ....: { ....: "kind": ["cat", "dog", "cat", "dog"], ....: "height": [9.1, 6.0, 9.5, 34.0], ....: "weight": [7.9, 7.5, 9.9, 198.0], ....: } ....: ) ....: In [89]: animals Out[89]: kind height weight 0 cat 9.1 7.9 1 dog 6.0 7.5 2 cat 9.5 9.9 3 dog 34.0 198.0 In [90]: animals.groupby("kind").agg( ....: min_height=pd.NamedAgg(column="height", aggfunc="min"), ....: max_height=pd.NamedAgg(column="height", aggfunc="max"), ....: average_weight=pd.NamedAgg(column="weight", aggfunc=np.mean), ....: ) ....: Out[90]: min_height max_height average_weight kind cat 9.1 9.5 8.90 dog 6.0 34.0 102.75
或者直接使用一个元组:
In [91]: animals.groupby("kind").agg( ....: min_height=("height", "min"), ....: max_height=("height", "max"), ....: average_weight=("weight", np.mean), ....: ) ....: Out[91]: min_height max_height average_weight kind cat 9.1 9.5 8.90 dog 6.0 34.0 102.75
不同的列指定不同的聚合方法
通过给agg方法传入一个字典,可以指定不同的列使用不同的聚合:
In [95]: grouped.agg({"C": "sum", "D": "std"}) Out[95]: C D A bar 0.392940 1.366330 foo -1.796421 0.884785
转换操作
转换是将对象转换为同样大小对象的操作。在数据分析的过程中,经常需要进行数据的转换操作。
可以接lambda操作:
In [112]: ts.groupby(lambda x: x.year).transform(lambda x: x.max() - x.min())
填充na值:
In [121]: transformed = grouped.transform(lambda x: x.fillna(x.mean()))
过滤操作
filter方法可以通过lambda表达式来过滤我们不需要的数据:
In [136]: sf = pd.Series([1, 1, 2, 3, 3, 3]) In [137]: sf.groupby(sf).filter(lambda x: x.sum() > 2) Out[137]: 3 3 4 3 5 3 dtype: int64
Apply操作
有些数据可能不适合进行聚合或者转换操作,Pandas提供了一个 apply 方法,用来进行更加灵活的转换操作。
In [156]: df Out[156]: A B C D 0 foo one -0.575247 1.346061 1 bar one 0.254161 1.511763 2 foo two -1.143704 1.627081 3 bar three 0.215897 -0.990582 4 foo two 1.193555 -0.441652 5 bar two -0.077118 1.211526 6 foo one -0.408530 0.268520 7 foo three -0.862495 0.024580 In [157]: grouped = df.groupby("A") # could also just call .describe() In [158]: grouped["C"].apply(lambda x: x.describe()) Out[158]: A bar count 3.000000 mean 0.130980 std 0.181231 min -0.077118 25% 0.069390 ... foo min -1.143704 25% -0.862495 50% -0.575247 75% -0.408530 max 1.193555 Name: C, Length: 16, dtype: float64
可以外接函数:
In [159]: grouped = df.groupby('A')['C'] In [160]: def f(group): .....: return pd.DataFrame({'original': group, .....: 'demeaned': group - group.mean()}) .....: In [161]: grouped.apply(f) Out[161]: original demeaned 0 -0.575247 -0.215962 1 0.254161 0.123181 2 -1.143704 -0.784420 3 0.215897 0.084917 4 1.193555 1.552839 5 -0.077118 -0.208098 6 -0.408530 -0.049245 7 -0.862495 -0.503211
到此这篇关于Pandas中GroupBy具体用法详解的文章就介绍到这了,更多相关Pandas GroupBy内容请搜索自学编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持自学编程网!
- 本文固定链接: https://zxbcw.cn/post/217281/
- 转载请注明:必须在正文中标注并保留原文链接
- QQ群: PHP高手阵营官方总群(344148542)
- QQ群: Yii2.0开发(304864863)