分类:Keras
在用Keras来实现CNN等一系列网络时,我们经常用ReLU作为激活函数,一般写法如下:fromkerasimportlayersfromkerasimportmodelsmodel=models.Sequential()model.add(layers.Conv2D(32,(3,3),activation='relu',input_shape=(28,28,1)))model.add(layers.MaxPooling2D((2,2)))model.add(layers.Conv2D(64,(3,3),activation='relu'))model.add(layers.MaxPooling2D((2,2)))model.add(layers.Conv2D(64,(3,3),...
继续阅读 >
一、KerasImageDataGenerator参数fromkeras.preprocessing.imageimportImageDataGeneratorkeras.preprocessing.image.ImageDataGenerator(featurewise_center=False,samplewise_center=False,featurewise_std_normalization=False,samplewise_std_normalization=False,zca_whitening=False,rotation_range=0.,width_shift_range=0.,height_shift_range=0.,shear_range=0.,zoom_range=0.,c...
继续阅读 >
ImageDataGenerator的参数自己看文档fromkeras.preprocessingimportimageimportnumpyasnpX_train=np.ones((3,123,123,1))Y_train=np.array([[1],[2],[2]])generator=image.ImageDataGenerator(featurewise_center=False,samplewise_center=False,featurewise_std_normalization=False,samplewise_std_normalization=False,zca_whitening=False,zca_epsilon=1e-6,rotation_range=180,width_shift_range=0.2,h...
继续阅读 >
2020
10-08
fit_generator是keras提供的用来进行批次训练的函数,使用方法如下:model.fit_generator(generator,steps_per_epoch=None,epochs=1,verbose=1,callbacks=None,validation_data=None,validation_steps=None,class_weight=None,max_queue_size=10,workers=1,use_multiprocessing=False,shuffle=True,initial_epoch=0)参数说明:generator:一个生成器,或者一个Sequence(keras.utils.Sequence)对象的实...
继续阅读 >
2020
10-08
在《python深度学习》这本书中。一、21页mnist十分类导入数据集fromkeras.datasetsimportmnist(train_images,train_labels),(test_images,test_labels)=mnist.load_data()初始数据维度:>>>train_images.shape(60000,28,28)>>>len(train_labels)60000>>>train_labelsarray([5,0,4,...,5,6,8],dtype=uint8)数据预处理:train_images=train_images.reshape((60000,28*28))train_images=train_images.asty...
继续阅读 >
2020
10-08