2021
10-28
10-28
Python机器学习之决策树和随机森林
目录什么是决策树决策树组成节点的确定方法决策树基本流程决策树的常用参数代码实现决策树之分类树网格搜索在分类树上的应用分类树在合成数据的表现什么是随机森林随机森林的原理随机森林常用参数决策树和随机森林效果实例用随机森林对乳腺癌数据的调参什么是决策树决策树属于经典的十大数据挖掘算法之一,是通过类似于流程图的数形结构,其规则就是iIF…THEN…的思想.,可以用于数值型因变量的预测或离散型因变量的分类,该算法简...
继续阅读 >
目录一、环境准备二、决策树是什么三、快速入门分类树四、详细分析入门案例五、分类树参数解释5.1、criterion5.2、random_state&splitter5.3、剪枝参数5.4、目标权重参数:class_weight&min_weight_fraction_leaf一、环境准备在开始学习前,需要准备好相应的环境配置。这里我选择了anaconda,创建了一个专门的虚拟环境来学习机器学习。这里关于anaconda的安装等就不赘述了,没有难度。二、决策树是什么通俗的说,有督促学习方...
决策树是以树的形式表示选择及其结果的图。图中的节点表示事件或选择,并且图的边缘表示决策规则或条件。它主要用于使用R的机器学习和数据挖掘应用程序。决策树的使用的例子是预测电子邮件是垃圾邮件或非垃圾邮件,预测肿瘤癌变,或者基于这些因素预测贷款的信用风险。通常,使用观测数据(也称为训练数据)来创建模型。然后使用一组验证数据来验证和改进模型。R具有用于创建和可视化决策树的包。对于新的预测变量集合,我们使用...